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Abstract

This paper is concerned with the problem of comparison of two non-probabilistic set-theoretical models for dynamic

response and buckling failure measures of bars with unknown-but-bounded initial imperfections. Two kinds of non-

probabilistic set-theoretical models are convex models and interval analysis models. In convex models and interval

analysis models, the uncertain quantities are considered to be unknown except that they belong to given sets in an

appropriate vector space. In this case, all information about the dynamic response and buckling failure measures of

bars is provided by the set of dynamic responses and buckling failure measures consistent with the constraints on the

uncertain quantities. The dynamic response estimate is actually a set in appropriate response space rather than a single

vector. The set estimate is the smallest calculable set which contains the uncertain dynamic response, but it is usually

impractical to calculate this set. Two set estimate methods are developed which can calculate the time varying box or

hyperrectangle, i.e. interval vector in the response space that contains the true dynamic response. Comparison between

convex models and interval analysis models in mathematical proofs and numerical calculations shows that, under the

condition of the outer enclosed ellipsoid from a hyperrectangle or an interval vector, the set dynamic response predicted

by interval analysis models is smaller than that yielded by convex models; under the condition of the outer enclosed

hyperrectangle or an interval vector from an ellipsoid, the dynamic response set calculated by convex models is smaller

than that obtained by interval analysis models.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that initial imperfections in structures, inevitably present due to the very manufacturing

process, have a significant effect on the buckling problem of structures, in particular for thin bars. Indeed it
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is unlikely that two bars, even produced by the same manufacturing procedure, will possess the same

deviations from the nominally straight state. Up to now, there is a considerable body of literature (Koning

and Taub, 1934; Malyshev, 1966; Lindberg, 1965, 1991; Elishakoff, 1978a,b; Ben-Haim and Elishakoff,

1989, 1990) dealing with the dynamic response and buckling failure measures of bars. In a number of
studies (Koning and Taub, 1934; Malyshev, 1966) a deterministic model of initial imperfections is devel-

oped, and the initial imperfections are expressed in the form of a half sine wave, which is the buckling mode

of the corresponding static problem of bars. Some results showed that, if the external load is greater than

the classical buckling load, the bar deflection grows exponentially in time and remains freely oscillating

after unloading, and that the amplitude of the oscillation is equal to the maximum deflection. If the external

load is less than the Euler buckling load then the maximum deflection can occur after unloading. However,

the initial imperfections are not necessarily proportional to the classical buckling mode, but rather are

functions of the involving uncertainties. This kind of uncertainty was considered to have randomness and
was studied by Lindberg (1965) using probabilistic theory. In the probabilistic models, the initial imper-

fection function was expanded in a Fourier series in terms of the classical buckling modes. The Fourier

coefficients were assumed to be normally distributed random variables with zero mean value and with

variance, which was assumed to be band-limited white-noise, proportional to the power spectral density of

the initial imperfection. Elishakoff (1978a,b) treated the same problem from the structural reliability point

of view. Closed form results were obtained for the case when the initial imperfection was co-configured with

the buckling mode, whereas for the general case the solution was reported through the Monte Carlo

method. Obviously, if sufficient probabilistic information is available, then probabilistic approach enable
one to evaluate the dynamic response and buckling failure measures of bars, which is of foremost

importance in design and analysis. However, in many cases, the probabilistic information on initial

imperfections, which is needed to determine the dynamic response and buckling failure measures, is

unfortunately unavailable. Under the circumstance, an alternative, non-probabilistic, unknown-but-

bounded initial imperfection model was introduced by Ben-Haim and Elishakoff (1989, 1990) for the study

of dynamic response and failure of elastic bars under dynamic axial loads. Imperfections were taken as

a series of N terms of the natural vibration and buckling mode shapes of the bar, with coefficients specified

to be bounded by an ellipsoid in N -dimensional Euclidean space. Buckling failure was defined by the
deflection of the bar at a particular position and time. For each measure of failure, a formula was derived

for the maximum possible dynamic response for any imperfection vector within or on the ellipsoid.

Independent of these developments, another approach has been to specify the imperfections by a bounding

box or hyperrectangle. In this model, all initial imperfections are assumed to be bounded from above and

below. Based on interval mathematics, in the studies by Qiu et al. (1996, 2001a,b), Rao and Berke (1997),

interval analysis methods of uncertainty were developed for modeling uncertain parameters of struc-

tures. In recent work of non-probabilistic convex models (Ben-Haim and Elishakoff, 1989, 1990; Qiu et al.,

2001b; Pantelides and Ganerli, 2001) and interval analysis methods (Qiu et al., 1995; Qiu and Elishakoff,
1998), bounds on the magnitude of uncertain variables are only required, not necessarily knowing the

probabilistic distribution densities, following the general methodologies developed in the monographs. It

was assumed that the uncertain variables fall into the multidimensional box, instead of conventional

optimization studies, where the minimum possible response is sought, here an uncertainty modeling

is developed as a optimization problem of finding the least favorable response and the most favor-

able response under the constrains within the set-theoretical description. Convex models and interval

analysis methods have been used for dealing with uncertain problems in a wide range of engineering

applications.
In this paper, from mathematical proofs and numerical calculations, the comparison between non-

probabilistic convex model and interval analysis model was carried out. Relationship between two models

and their respective measures of dynamic response are demonstrated which give better insight into the two

models to deal with uncertain problems.
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2. Statement of the problem

The differential equation of motion for the bar is given by
EI
o4y
ox4

þ P
o2y
ox2

þ qA
o2y
ot2

¼ �P
o2ŷ
ox2

ð1Þ
where x is the axial coordinate, t is the time, ŷðxÞ is the initial imperfection, i.e. a small perturbation to the

initial shape of the compressed bar, yðx; tÞ is the additional transverse deflection measured from ŷðxÞ
(ŷðxÞ þ yðx; tÞ being the total deflection of the bar axis from the straight line between the two ends x ¼ 0 and

x ¼ l), E is Young’s modulus, I is the moment of inertia, q is the mass density, A is the cross-sectional area,

P is the applied axial load, EI and qA are taken as constant.

The compressed bar is simply supported, so that the boundary conditions are
y ¼ 0;
o2y
ox2

¼ 0 at x ¼ 0 and x ¼ l ð2Þ
and the initial conditions are
y ¼ 0;
oy
ot

¼ 0 at t ¼ 0 ð3Þ
The initial imperfections are assumed to be an uncertain function of the position x and are bounded.

We now introduce the non-dimensional quantities
uðn; sÞ ¼ yðx; tÞ
D

; ûðnÞ ¼ ŷðxÞ
D

; n ¼ x
l
; s ¼ x1t; a ¼ P

Pcl
ð4Þ
where
D ¼
ffiffiffi
I
A

r
; Pcl ¼

p2EI
l2

; x1 ¼
p
l

� �2 ffiffiffiffiffiffi
EI
qA

s
ð5Þ
in which uðn; sÞ is the non-dimensional additional displacement, ûðnÞ is the non-dimensional initial dis-

placement, n is the axial coordinate, s is the time, a is the non-dimensional applied load, Pcl is the classical
buckling load of a perfect bar, x1 is the first eigenfrequency of a perfect bar without an axial load, D is the

radius of gyration of the bar cross section.

Thus, the differential equation (1), the boundary and initial conditions become, respectively,
o4u

on4
þ p2a

o2u

on2
þ p4 o

2u
os2

¼ �p2a
o2û

on2
ð6Þ
and
u ¼ 0;
ou
os

¼ 0 at s ¼ 0 ð7Þ
and
u ¼ 0;
o2u

on2
¼ 0 at n ¼ 0 and n ¼ 1 ð8Þ
For this uncertain boundary-value problem we resort to the normal mode approach, which consists in
expanding the given and sought functions in series in terms of the modes of free vibration of a perfect bar

without an axial load.
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The constant load P is applied at time s ¼ 0 and kept indefinitely. We expand the initial imperfection

profile in a Fourier sine series as
ûðnÞ ¼
X1
n¼1

An sin npn ð9Þ
where An’s are the uncertain variables and bounded.
We expand the additional deflection uðn; sÞ in a series in the same manner
uðn; sÞ ¼
X1
n¼1

GnðsÞ sin npn ð10Þ
where GnðsÞ is an uncertain function of s.
Following Elishakoff (1978a,b), one finds that the Fourier coefficients of the additional deflection profile

are
GnðsÞ ¼ AnwnðsÞ ð11Þ
in which wn is the following deterministic function of time:
wnðsÞ ¼
ðcoshðrnsÞ � 1Þ=ð1� bnÞ; bn < 1

an2s2=2; bn ¼ 1

ðcosðrnsÞ � 1Þ=ð1� bnÞ; bn > 1

8<
: ð12Þ
where
bn ¼
n2

a
; rn ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jn2 � aj

p
ð13Þ
Thus, the total normalized deflection function vðn; sÞ at position n and at time s is given by
vðn; sÞ ¼ uðn; sÞ þ ûðnÞ ¼
X1
n¼1

Anð1þ wnðsÞÞ sin npn ð14Þ
In the subsequent discussion this series will be truncated at n ¼ N . For convenience, let us define an N -

dimensional vector as follows:
u ¼ ðuiÞ; uiðn; sÞ ¼ ð1þ wiðsÞÞ sin npn ð15Þ
Thus, truncating the total deflection vðn; sÞ in Eq. (14) after the N th term, one finds
vðn; sÞ ¼
XN
n¼1

Anð1þ wnðsÞÞ sinðnpnÞ ¼ ATu ð16Þ
where AT ¼ ðA1;A2; . . . ;AN Þ.
The aim of this paper is to exploit two non-probabilistic set-theoretical models to determine the region or

the upper and lower bounds of the parameter characterizing the total normalized deflection of a thin bar

under dynamic loading conditions, given uncertain-but-bounded initial geometric imperfection region. By

evaluating the region of the dynamic response parameter as a function of the load and of the uncertainties

in the initial imperfection of the bar, it is possible to identify the allowable imperfection region for given
region of the load.
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3. Convex models

A new, non-probabilistic, convex models of uncertainty have been developed (Koning and Taub, 1934),

for applied mechanics applications in a quite general context. The models utilize the imperfect, scanty
knowledge on uncertain quantities, instead of precise information on the probability contents of random

variables. The models use a representation of uncertainty phenomena by convex sets such as ellipsoid. The

approach itself is also referred to a convex modeling.

Let A0 ¼ ðAn0Þ be the nominal values of the uncertain-but-bounded initial imperfection Fourier coeffi-

cients in Eq. (16), which might be visualized as the mean values or average values of those uncertain-but-

bounded initial imperfection Fourier coefficients. Then, the uncertain-but-bounded initial imperfection

Fourier coefficients of values different from those nominal values could be denoted as the following vector

form
A ¼ A0 þ d ð17aÞ

and the component form
An ¼ An0 þ dn; n ¼ 1; 2; . . . ;N ð17bÞ

where d ¼ ðdnÞ is the uncertain quantity in the uncertain-but-bounded initial imperfection Fourier coeffi-

cients. Thus, the total normalized deflection function vðn; sÞ can be rewritten as
vðn; sÞ ¼
XN
n¼1

An0ð1þ wnðsÞÞ sinðnpnÞ þ
XN
n¼1

dnð1þ wnðsÞÞ sinðnpnÞ

¼ AT
0u þ dTu ¼ v0ðn; sÞ þ dTu ð18Þ
where
v0ðn; sÞ ¼
XN
n¼1

An0ð1þ wnðsÞÞ sinðnpnÞ ¼ AT
0u ð19Þ
Let us assume that we have only limited information for characterizing the initial imperfection profile. In

particular, the only information is that the deviation d ¼ ðdnÞ from the initial imperfection Fourier coef-

ficients in Eq. (14) fall within the following ellipsoidal set
Eðh;W Þ ¼ fdT ¼ ðd1; d2; . . . ; dN Þ : dTW d6 h2g ð20Þ
where W is an N 
 N -dimensional positive definite real symmetric matrix and is called the weighting matrix,

and h is a positive number and is called the radius of the ellipsoid. The shape and size of the ellipsoid are

determined by the weighted matrix W and the radius h, which are chosen to represent available information

concerning the variability of the Fourier coefficients of the initial deflection profile. N is the number of

dominant Fourier coefficients.
The bounded convex set (20) may be thought of as a constraint condition. Thus, by solving for the total

deflection of the bar vðn; sÞ we mean to solve the family of the differential equations in which the initial

geometric imperfection is uncertain ranging in inside the certain convex set. That is to say that the total

deflection of the bar equation with initial geometric imperfection is a set. Taking this into account, one has

to determine a closed convex interval set ½vminðn; sÞ; vmaxðn; sÞ� for the total deflection, one of the smallest

widths enclosing all possible values of the total normalized deflection vðn; sÞ. Because Eðh;W Þ represents a
realistic ensemble of the initial imperfection Fourier coefficients, the lowest total deflection vminðn; sÞ which
can be obtained from any of the bars in this ensemble is expressed formally as the minimum of expression
(18) on the set Eðh;W Þ.
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The set of extreme points of the ellipsoidal set Eðh;W Þ is the ellipsoidal shell
Sðh;W Þ ¼ fdT ¼ ðd1; d2; . . . ; dN Þ : dTW d ¼ h2g ð21Þ
The problem is formulated as follows: given an imperfection ellipsoid of the initial imperfections, find

the initial imperfection vector that extremize the total deflection.
The extremum on the convex set Eðh;W Þ of the total deflection of the bar at time s and position n is

represented as
vextðn; sÞ ¼ extremum
A2Eðh;W Þ

fvðn; sÞg ð22Þ
Because vðn; sÞ is a linear function of the deviation vector in the Fourier coefficients d ¼ ðdnÞ, and because

Eðh;W Þ is a convex set, the extremum of the total deflection vðn; sÞ occurs on the set of extreme points of the

set Eðh;W Þ.
That is to say
vextðn; sÞ ¼ extremum
A2Sðh;W Þ

fvðn; sÞg ð23Þ
We can obtain an explicit expression for the extremum by employing the method of Lagrange multi-

pliers. In the most cases, the weighting matrix of the ellipsoid is often taken as the following N 
 N -

dimensional diagonal matrix form
W ¼ dia
1

e2n

� �
ð24Þ
where en > 0, n ¼ 1; 2; . . . ;N . Then, the ellipsoidal equation can be written as
dTW d ¼
XN
n¼1

d2
n

e2n
6 h2 ð25Þ
Thus, by convex models, the least favorable and the most favorable total deflections may be determined

as follows:
vmaxðn; sÞ ¼
XN
n¼1

An0ð1þ wnðsÞÞ sinðnpnÞ þ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðenð1þ wnðsÞÞ sinðnpnÞÞ2
vuut ð26aÞ
and
vminðn; sÞ ¼
XN
n¼1

An0ð1þ wnðsÞÞ sinðnpnÞ � h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðenð1þ wnðsÞÞ sinðnpnÞÞ2
vuut ð26bÞ
Under dynamic loading conditions, by Eq. (26) we can calculate the maximum and minimum bounds of

the total normalized deflection of a thin bar with given uncertain-but-bounded initial geometric imper-

fection region using the convex models.
4. Interval analysis method

In the total normalized deflection function vðn; sÞ, considering a realistic situation in which available
information on the dominant N initial imperfection Fourier coefficients An; n ¼ 1; 2; . . . ;N in Eq. (16) is

not enough to justify an assumption on their probabilistic characteristics, we follow the thought of interval
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mathematics, and assume that the dominant N initial imperfection Fourier coefficients An; n ¼ 1; 2; . . . ;N
are within bounding vectors A ¼ ðA1;A2; . . . ;AN ÞT and A ¼ ðA1;A2; . . . ;AN Þ

T
, respectively:
An 6An 6An; n ¼ 1; 2; . . . ;N ð27Þ
Clearly, the above inequalities can be expressed as the following interval vector form (Alefeid and
Herzberger, 1983; Moore, 1979; Deif, 1991):
AI ¼ ½A;A� ¼ ðAI
nÞ; AI

n ¼ ½An;An�; n ¼ 1; 2; . . . ;N ð28Þ
where A ¼ ðAnÞ and A ¼ ðAnÞ.
From the interval vector equations (28), we may define the nominal value vector or midpoint vector or

center vector of the interval dominant N initial imperfection Fourier coefficient vector
Ac ¼ ðAþ AÞ
2

¼ ðAc
nÞ; Ac

n ¼
ðAn þ AnÞ

2
; n ¼ 1; 2; . . . ;N ð29Þ
and the deviation amplitude vector or radius vector or uncertainty of the interval dominant N initial

imperfection Fourier coefficient vector
DA ¼ ðA� AÞ
2

¼ ðDAnÞ; DAn ¼
ðAn � AnÞ

2
; n ¼ 1; 2; . . . ;N ð30Þ
In terms of the interval arithmetic operations, an arbitrary interval number or vector or matrix can be

written as the sum of its midpoint and its uncertain interval. Thus, the interval dominant N initial
imperfection Fourier coefficient vector AI ¼ ½A;A� is decomposed into the sum of the nominal value Ac and

the deviation amplitude DA, i.e.,
AI ¼ ½A;A� ¼ ½Ac � DA;Ac þ DA� ¼ Ac þ ½�DA;DA� ¼ Ac þ DAI ð31Þ
where A ¼ Ac þ DA, A ¼ Ac � DA, and
DAI ¼ ½�DA;DA� ¼ DA½�1; 1� ¼ DAeD ð32Þ
where eD ¼ ½�1; 1�.
In Eq. (16), the total deflection vðn; sÞ is thought of as a function of the dominant N initial imperfection

Fourier coefficient An, n ¼ 1; 2; . . . ;N , by means of the interval extension of interval mathematics, from Eq.
(16), we have that
vIðn; sÞ ¼ ½vðn; sÞ; vðn; sÞ� ¼ ðAIÞTu ð33Þ
Substitution of Eq. (31) into the above expression yielding
vIðn; sÞ ¼ ðAc þ ½�DA;DA�ÞTu ð34Þ
Applying the interval operation, Eq. (34) becomes
vIðn; sÞ ¼ ½vðn; sÞ; vðn; sÞ� ¼ Acu þ ½�DA;DA�ÞTjuj ¼ Acu þ ½�DATjuj;DATjuj� ð35Þ

According to the necessary and sufficient conditions of equality of two interval vectors, we obtain
vðn; sÞ ¼ Acu þ DATjuj ð36aÞ
and
vðn; sÞ ¼ Acu � DATjuj ð36bÞ
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In terms of the definition of DA and u, we can deduce
vðn; sÞ ¼ vcðn; sÞ þ
XN
n¼1

DAnjð1þ wnðsÞÞ sinðnpnÞj ð37aÞ
and
vðn; sÞ ¼ vcðn; sÞ �
XN
n¼1

DAnjð1þ wnðsÞÞ sinðnpnÞj ð37bÞ
where
vcðn; sÞ ¼ Acu ¼
XN
n¼1

Ac
nð1þ wnðsÞÞ sinðnpnÞ ð38Þ
With the expression of Ac and u, we also conclude
vðn; sÞ ¼
XN
n¼1

Ac
nð1þ wnðsÞÞ sinðnpnÞ þ

XN
n¼1

DAnjð1þ wnðsÞÞ sinðnpnÞj ð39aÞ
and
vðn; sÞ ¼
XN
n¼1

Ac
nð1þ wnðsÞÞ sinðnpnÞ �

XN
n¼1

DAnjð1þ wnðsÞÞ sinðnpnÞj ð39bÞ
By Eqs. (39) we can determine the interval region of the total normalized deflection of a thin bar under
dynamic loading conditions, given uncertain-but-bounded initial geometric imperfection region using the

interval analysis method.
5. Comparison of two set-theoretical methods based on determination of the outer enclosed hyperrectangle or

interval vector from an ellipsoid

In this section, we will process the comparison problem of the interval analysis method and convex

models based on determining the outer enclosed hyperrectangle or interval vector from an ellipsoid.

5.1. Determination of the interval vector from an ellipsoid

Suppose that from the experimental data we can deduce that the uncertain parameters are varying in the

ellipsoidal set (20). In order to determine the interval vector from the ellipsoid (20), we suppose that the
interval vector (28) that encloses the ellipsoid (20), in two-dimensional space, see Fig. 1.
2A

2A

20A

2A

1A 1A10A 1A

Fig. 1. The rectangle enclosing an ellipse.
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According to the symmetry, we can deduce that
Ac ¼ A0 or Ac
n ¼ An0; n ¼ 1; 2; . . . ;N ð40Þ
and
DA ¼ he or DAn ¼ hen; n ¼ 1; 2; . . . ;N ð41Þ
Eqs. (40) and (41) imply that the midpoint of the interval vector is equal to the mean value of the ellipsoid,

the uncertainties of the interval vector are the multiplication of the radius and the semi-axes of the ellipsoid.
5.2. Comparison of two set-theoretical methods

The maximum and minimum values, vmaxðn; sÞ and vminðn; sÞ of the total deflection of a thin bar with

given uncertain initial geometric imperfection, which are obtained by convex models, can be composed to a

convex set or an interval
vIðn; sÞ ¼ ½vminðn; sÞ; vmaxðn; sÞ� ð42Þ
From the convex models point of view, the convex set vIðn; sÞ is the smallest set containing all true the total

deflection of a thin bar with uncertain initial geometric imperfections.

By interval analysis method, the upper bound vðn; sÞ, and lower bound vðn; sÞ, on the total deflection of a

thin bar with uncertain initial geometric imperfections can also constitute an interval number. According to
the interval mathematical theory (Ben-Haim and Elishakoff, 1989, 1990), the interval number
uIðn; sÞ ¼ ½vðn; sÞ; vðn; sÞ� ð43Þ
is also the smallest set containing all total deflections of a thin bar with uncertain initial geometric

imperfections.

The following part of this section, we will compare uIðn; sÞ and vIðn; sÞ, and show which is the true

smaller set in uIðn; sÞ and vIðn; sÞ.
Now we suppose that the interval vector AI ¼ ½A;A� ¼ ðAI

nÞ, AI
n ¼ ½An;An�, n ¼ 1; 2; . . . ;N of the uncertain

initial geometric imperfection is obtained based on the ellipsoid (20) of the uncertain initial geometric
imperfection. Thus, by means of Eq. (40), from Eqs. (19) and (38), we can obtain the following equality:
v0ðn; sÞ ¼ vcðn; sÞ ð44Þ
For the uncertainties DAn ¼ ðAn � AnÞ=2, n ¼ 1; 2; . . . ;N , of the interval vector AI and the radius h and the

semi-axes en, n ¼ 1; 2; . . . ;N of the ellipsoid of the uncertain-but-bounded initial imperfections vector, from

Eqs. (27) and (41) we have that
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðenð1þ wnðsÞÞ sinðnpnÞÞ2
vuut ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðenð1þ wnðsÞÞ sinðnpnÞÞ2
vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðDAnð1þ wnðsÞÞ sinðnpnÞÞ2
vuut ð45Þ
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Since
XN
m;n¼1
m6¼n

jðDAmð1þ wmðsÞÞ sinðmpnÞÞjjðDAnð1þ wnðsÞÞ sinðnpnÞÞjDAmDAn

¼
XN
m;n¼1
m6¼n

jðð1þ wmðsÞÞ sinðmpnÞÞjjðð1þ wnðsÞÞ sinðnpnÞÞjDAmDAn P 0 ð46Þ
and if N P 1, then, from the following equality:
DATj/j ¼
XN
n¼1

jðDAnð1þ wnðsÞÞ sinðnpnÞÞj ¼
XN
n¼1

jðð1þ wnðsÞÞ sinðnpnÞÞjDAn

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

jðð1þ wnðsÞÞ sinðnpnÞÞjDAn

 !2
vuut

¼


n¼1ðjðð1þ wnðsÞÞ sinðnpnÞÞjDAnÞ2 þ
PN

m;n¼1
m6¼n

jðð1þ wmðsÞÞ sinðmpnÞÞjjðð1þ wnðsÞÞ sinðnpnÞÞjDAmDAn

r
ð47Þ
We obtain the following inequality:
DATj/j ¼
XN
n¼1

jðDAnð1þ wnðsÞÞ sinðnpnÞÞj ¼
XN
n¼1

jðð1þ wnðsÞÞ sinðnpnÞÞjDAn

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

jðð1þ wnðsÞÞ sinðnpnÞÞjDAn

 !2
vuut P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðjðð1þ wnðsÞÞ sinðnpnÞÞjDAnÞ2
vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðhenðð1þ wnðsÞÞ sinðnpnÞÞÞ2
vuut ð48Þ
Because of Eqs. (43) and (48), from Eqs. (30) and (39) we can deduce
v6 umin 6 umax 6 v or uI � vI ð49Þ
The expression (53) show that under the condition of the interval vector determined from an ellipsoid of

the initial geometric imperfection vector, the total deflection set obtained by convex models is smaller that

by interval analysis method for a thin bar with uncertain-but-bounded initial geometric imperfections.

Namely the lower bound of the total normalized deflection within interval analysis method is smaller than

one predicted by convex models, and the upper bound of the total deflection furnished by the interval
analysis method is larger than those yielded by convex models.
6. Comparison of two set-theoretical methods based on determination of the out enclosed ellipsoid from an

hyperrectangle or interval vector

In this section, we will handle the comparison problem of the interval analysis method and convex

models based on determining the outer enclosed ellipsoid from a hyperrectangle or an interval vector.
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6.1. Determination of the ellipsoid form an interval vector

Before any prediction can be made by convex model method and interval analysis method on the

buckling critical load of the composite structures with uncertain parameters, the values of the ellipsoidal
radius a, the ellipsoidal semi-axes e ¼ ðenÞN , and the upper bound A ¼ ðAnÞN and lower bound A ¼ ðAnÞN of

the interval vector should be determined in advance. In fact, these values which describe uncertainties in

structural parameters are dependent on the manufacturing process by which composite structures have

been fabricated. It is understandable that the more advanced the manufacturing process and the better the

workmanship, the smaller these uncertainties in structural parameters will be in value. Some measurements

of the structural parameters for the composite materials were described by Elishakoff (1978a,b), which

shows clearly a scatter or an uncertainty of the measured data for the structural parameters. In particular,

for the transverse and longitudinal Poisson’s ratio, the experimental values have a large uncertainty.
Generally speaking, if sufficient amount of experimental data are available, the average value of these data

could be used as the nominal value A0 ¼ ðAn0ÞN for the corresponding structural parameters, whereas the

absolute values of the maximum uncertainties in structural parameters could be chosen as the proper

deviations from the average values of the corresponding measured data.

Assume that from the experimental data we can know that the uncertain-but-bounded initial imper-

fection Fourier coefficients on Eq. (16) are varying in the inequalities (27) respectively. Let A0 ¼ ðAn0ÞN be

the nominal values of the initial imperfection Fourier coefficients. Then, the uncertain-but-bounded initial

imperfection Fourier coefficients of values different from those nominal values could be denoted as the
following vector form:
A ¼ A0 þ d; jdj6DA ð50aÞ

and the component form
An ¼ An0 þ dn; jdnj6DAn; n ¼ 1; 2; . . . ;N ð50bÞ

where the second of the above equation describes a box or hyperrectangle. In two-dimensional case, see

Fig. 2. In order to give the relation expression of an interval vector and an ellipsoid, we need to enclose this

box by an ellipsoid, i.e.
XN
n¼1

d2
n

ðhenÞ2
¼
XN
n¼1

ðAn � An0Þ2

ðhenÞ2
6 1 ð51Þ
Obviously, according to the symmetry the interval and the ellipsoid, we can deduce that
A0 ¼ Ac or An0 ¼ Ac
n; n ¼ 1; 2; . . . ;N ð52Þ
2u

2u

cu2

2u

1u
cu1 1u 1u

Fig. 2. The ellipse enclosing a rectangle.
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Thus, the question arises as to how to determine the semi-axes e ¼ ðenÞN and the radius h of this ellipsoid

from given the upper bound A ¼ ðAnÞN and lower bound A ¼ ðA� nÞN of the interval vector. Naturally,

such an ellipsoid should have a minimum volume of the above ellipsoid is given by
V ¼ C
YN
n¼1

ðhenÞ ð53Þ
where C is a constant.

Since the corner points An0 � DAn of the box (50b) should be on the surface of the ellipsoid, we have that
DA2
1

ðhe1Þ2
þ DA2

2

ðhe2Þ2
þ . . .þ DA2

N

ðheNÞ2
¼ 1 ð54Þ
Thus, the problem of determining the values h and e ¼ ðenÞN from the given values A ¼ ðAnÞN and
A ¼ ðAnÞN become the minimum value problem of the volume V of the ellipsoid subject to the constraint

condition (54). To do this, we use the Lagrange multiplier technique. The Lagrangean function L reads
L ¼ C
YN
n¼1

ðhenÞ þ k
DA2

1

ðhe1Þ2

 
þ DA2

2

ðhe2Þ2
þ . . .þ DA2

N

ðheN Þ2
� 1

!
ð55Þ
Requirements
oL
oðhenÞ

¼ 0; n ¼ 1; 2; . . . ;N ð56Þ
leads to the equations
C
YN

m¼1;m6¼n

ðhemÞ �
2kDA2

n

ðhenÞ3
¼ 0; n ¼ 1; 2; . . . ;N ð57Þ
We multiply (57) by hen, n ¼ 1; 2; . . . ;N and sum up all N equations to yield
NV � 2k
DA2

1

ðhe1Þ2

 
þ DA2

2

ðhe2Þ2
þ . . .þ DA2

N

ðheN Þ2

!
¼ 0 ð58Þ
Bearing in mind Eqs. (54) and (58) becomes
k ¼ N
2
V ð59Þ
Substituting Eq. (59) into Eq. (57) leads to
V
ðhenÞ

� N
DA2

n

ðhenÞ3
V ¼ 0 ð60Þ
which implies that
hen ¼
ffiffiffiffi
N

p
DAn; n ¼ 1; 2; . . . ;N ð61Þ
If
ffiffiffiffi
N

p
DAn, n ¼ 1; 2; . . . ;N have the common factor, then let the ellipsoid radius h be equal to the

common factor, i.e.
h ¼ commonfactorf
ffiffiffiffi
N

p
DAn; n ¼ 1; 2; . . . ;Ng ð62Þ
otherwise, let the ellipsoidal radius h be equal to unity, i.e.
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h ¼ 1 ð63Þ
Thus, the semi-axes of the ellipsoid are determined from the expressions
en ¼
ffiffiffiffi
N

p
DAn

h
; n ¼ 1; 2; . . . ;N ð64Þ
The one-to-one relationship of an interval vector and an ellipsoid is determined. Given one of an interval
vector and an ellipsoid, we can determine another.

6.2. Comparison between interval analysis method and convex models

From Eqs. (34) and (42), we can compute the upper and lower bounds on the critical buckling load of

composite structures by convex model method and interval analysis method, respectively. In this section,

we will compare the accuracy of convex model method and interval analysis method in solving the buckling
problem.

In terms of Eq. (52), from Eqs. (19) and (38), we can deduce the following equality:
vcðn; sÞ ¼ v0ðn; sÞ ð65Þ
For the second parts of Eq. (26) and (39), let us consider Chaucy–Schawrz inequality
XN
n¼1

anbn 6
XN
n¼1

a2n

 !1=2 XN
n¼1

b2n

 !1=2

ð66Þ
where ai, bi, i ¼ 1; 2; . . . ;N are real numbers.
Letting
an ¼ jðð1þ wnðsÞÞ sinðnpnÞÞDAnj; bn ¼
1

N
ð67Þ
from Eq. (66), we have
XN
n¼1

jðð1þ wnðsÞÞ sinðnpnÞÞjDAn 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

Nðð1þ wnðsÞÞ sinðnpnÞDAnÞ2
vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðð1þ wnðsÞÞ sinðnpnÞ
ffiffiffiffi
N

p
DAnÞ2

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðð1þ wnðsÞÞ sinðnpnÞhenÞ2
vuut ð68Þ
Hence, because of Eqs. (65) and (68), from Eqs. (26) and (39), we obtain
vminðn; sÞ6 vðn; sÞ6 vðn; sÞ6 vmaxðn; sÞ ð69Þ
from which, we can know that the upper and lower bounds on the critical buckling loads are calculated by

the interval analysis method is sharper than those that are obtained by convex model method.
7. Numerical examples

Let us take the numerical example shown in Fig. 3 from Lindberg (1965) to show that comparison
between models and interval analysis models in predicting the dynamic response and buckling measure set

for structures with unknown-but-bounded initial imperfections.



Fig. 3. A compressed bar and its applied axial load P .
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In the case of determining the interval vector from an ellipsoid, the ellipsoidal set of allowed dominant
initial imperfection Fourier coefficients is a sphere centered at the origin in 10-dimensional real number

space. Thus, 10 harmonics are considered, the weighting matrix of the ellipsoid is taken as the 10 · 10
identity matrix and the radius of the ellipsoid is taken as h ¼ 0:07. Thus, the interval vector of the initial

imperfections of the bar can be determined as AI
n ¼ ½0:045; 0:055�, i ¼ 1; 2; . . . ; 10 based on the given

ellipsoid. The upper and lower curves of Fig. 4 show the maximum and minimum normalized total

deflections as functions of normalized time, at the midpoint n ¼ 0:5 of the bar. The axial load is twice the

classical buckling load, so a ¼ 2. It can be seen from Fig. 4 that under the condition of the interval vector

determined from an ellipsoid of the initial imperfection vector, the total deflection set obtained by convex
models is smaller that by interval analysis method for the bar with initial imperfections. Namely the lower

bound on the total deflection of the bar within interval analysis method is smaller than one predicted by

convex models, and the upper bound on the total deflection of the bar furnished by the interval analysis

method is larger than one yielded by convex models.

In the condition of determining the ellipsoid from an interval vector, the component of the interval

vector of allowed dominant initial imperfection Fourier coefficients are AI
n ¼ ½0:045; 0:055�, i ¼ 1; 2; . . . ; 10.

Making use of Eqs. (29) and (30), the mean values and the radiuses of the interval vector are calculated

Ac
n ¼ 0:05, DAn ¼ 0:005, i ¼ 1; 2; . . . ; 10. Thus, by Eqs. (52), (62) and (64), we can obtain the central values,

the radius and semi-axes are, respectively, An0 ¼ 0:05, i ¼ 1; 2; . . . ; 10; h ¼ 0:005
ffiffiffiffiffi
10

p
; ei ¼ 1, i ¼ 1; 2; . . . ; 10.

Fig. 5 portrays the dependence of the maximum and minimum total deflections of the bar with initial

imperfections on the time by convex models and interval analysis method. From Fig. 5 we can see that the

maximum and minimum total deflections of the bar non-linearly vary with the time s; Convex models yield

broader bounds, namely the lower bound within convex models is smaller than that predicted by interval

models. Likewise, the upper bound furnished by the convex models is larger than that yielded by interval

models.
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Fig. 4. The bounds on the total normalized deflection versus normalized time.
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Fig. 5. The bounds on the total normalized deflection versus normalized time.
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8. Conclusions

Two set estimation methods have been given to the problem of set estimating the dynamic response and

buckling failure measures of bars, when the initial imperfection vector is uncertain except for the fact that it

belongs to given bounded convex set. The cases of both ellipsoid constraints and interval constraints for the
initial imperfections have been considered. In the former case, the interval vector containing the set of

possible responses of the dynamic response and buckling failure measures of bars by convex models is

given. In the latter case, the interval vector describing a bounding box or hyperrectangle as a set of possible

dynamic responses is also derived. The transformation relationship of ellipsoid and interval vector was

generally produced in different conditions. It is proved that, under the condition of the ellipsoid from an

interval vector, the interval vector set yielded by interval analysis models is smaller than that presented by

convex models; under the condition of the interval vector from an ellipsoid, the interval response vector set

by convex models is smaller than that yielded by interval analysis models. Therefore, if we know the form of
convex set of initial imperfections, we should use convex models for solving the dynamic response and

buckling failure measures of bars with uncertain-but-bounded initial imperfections; if we describe the initial

imperfections by an interval vector, we should employ interval analysis models for estimating the dynamic

response and buckling failure measures of bars with uncertain-but-known initial imperfections. In fact, the

interval vector containing the uncertain initial imperfections is more easily available than the ellipsoidal, so

the interval analysis method is more practical.
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