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Abstract

This paper is concerned with the problem of comparison of two non-probabilistic set-theoretical models for dynamic
response and buckling failure measures of bars with unknown-but-bounded initial imperfections. Two kinds of non-
probabilistic set-theoretical models are convex models and interval analysis models. In convex models and interval
analysis models, the uncertain quantities are considered to be unknown except that they belong to given sets in an
appropriate vector space. In this case, all information about the dynamic response and buckling failure measures of
bars is provided by the set of dynamic responses and buckling failure measures consistent with the constraints on the
uncertain quantities. The dynamic response estimate is actually a set in appropriate response space rather than a single
vector. The set estimate is the smallest calculable set which contains the uncertain dynamic response, but it is usually
impractical to calculate this set. Two set estimate methods are developed which can calculate the time varying box or
hyperrectangle, i.e. interval vector in the response space that contains the true dynamic response. Comparison between
convex models and interval analysis models in mathematical proofs and numerical calculations shows that, under the
condition of the outer enclosed ellipsoid from a hyperrectangle or an interval vector, the set dynamic response predicted
by interval analysis models is smaller than that yielded by convex models; under the condition of the outer enclosed
hyperrectangle or an interval vector from an ellipsoid, the dynamic response set calculated by convex models is smaller
than that obtained by interval analysis models.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that initial imperfections in structures, inevitably present due to the very manufacturing
process, have a significant effect on the buckling problem of structures, in particular for thin bars. Indeed it
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is unlikely that two bars, even produced by the same manufacturing procedure, will possess the same
deviations from the nominally straight state. Up to now, there is a considerable body of literature (Koning
and Taub, 1934; Malyshev, 1966; Lindberg, 1965, 1991; Elishakoff, 1978a,b; Ben-Haim and Elishakoff,
1989, 1990) dealing with the dynamic response and buckling failure measures of bars. In a number of
studies (Koning and Taub, 1934; Malyshev, 1966) a deterministic model of initial imperfections is devel-
oped, and the initial imperfections are expressed in the form of a half sine wave, which is the buckling mode
of the corresponding static problem of bars. Some results showed that, if the external load is greater than
the classical buckling load, the bar deflection grows exponentially in time and remains freely oscillating
after unloading, and that the amplitude of the oscillation is equal to the maximum deflection. If the external
load is less than the Euler buckling load then the maximum deflection can occur after unloading. However,
the initial imperfections are not necessarily proportional to the classical buckling mode, but rather are
functions of the involving uncertainties. This kind of uncertainty was considered to have randomness and
was studied by Lindberg (1965) using probabilistic theory. In the probabilistic models, the initial imper-
fection function was expanded in a Fourier series in terms of the classical buckling modes. The Fourier
coefficients were assumed to be normally distributed random variables with zero mean value and with
variance, which was assumed to be band-limited white-noise, proportional to the power spectral density of
the initial imperfection. Elishakoff (1978a,b) treated the same problem from the structural reliability point
of view. Closed form results were obtained for the case when the initial imperfection was co-configured with
the buckling mode, whereas for the general case the solution was reported through the Monte Carlo
method. Obviously, if sufficient probabilistic information is available, then probabilistic approach enable
one to evaluate the dynamic response and buckling failure measures of bars, which is of foremost
importance in design and analysis. However, in many cases, the probabilistic information on initial
imperfections, which is needed to determine the dynamic response and buckling failure measures, is
unfortunately unavailable. Under the circumstance, an alternative, non-probabilistic, unknown-but-
bounded initial imperfection model was introduced by Ben-Haim and Elishakoff (1989, 1990) for the study
of dynamic response and failure of elastic bars under dynamic axial loads. Imperfections were taken as
a series of N terms of the natural vibration and buckling mode shapes of the bar, with coefficients specified
to be bounded by an ellipsoid in N-dimensional Euclidean space. Buckling failure was defined by the
deflection of the bar at a particular position and time. For each measure of failure, a formula was derived
for the maximum possible dynamic response for any imperfection vector within or on the ellipsoid.
Independent of these developments, another approach has been to specify the imperfections by a bounding
box or hyperrectangle. In this model, all initial imperfections are assumed to be bounded from above and
below. Based on interval mathematics, in the studies by Qiu et al. (1996, 2001a,b), Rao and Berke (1997),
interval analysis methods of uncertainty were developed for modeling uncertain parameters of struc-
tures. In recent work of non-probabilistic convex models (Ben-Haim and Elishakoff, 1989, 1990; Qiu et al.,
2001b; Pantelides and Ganerli, 2001) and interval analysis methods (Qiu et al., 1995; Qiu and Elishakoff,
1998), bounds on the magnitude of uncertain variables are only required, not necessarily knowing the
probabilistic distribution densities, following the general methodologies developed in the monographs. It
was assumed that the uncertain variables fall into the multidimensional box, instead of conventional
optimization studies, where the minimum possible response is sought, here an uncertainty modeling
is developed as a optimization problem of finding the least favorable response and the most favor-
able response under the constrains within the set-theoretical description. Convex models and interval
analysis methods have been used for dealing with uncertain problems in a wide range of engineering
applications.

In this paper, from mathematical proofs and numerical calculations, the comparison between non-
probabilistic convex model and interval analysis model was carried out. Relationship between two models
and their respective measures of dynamic response are demonstrated which give better insight into the two
models to deal with uncertain problems.
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2. Statement of the problem

The differential equation of motion for the bar is given by

oty %y y o’y

E164+P62+pA6t2_ P@x2 (1)
where x is the axial coordinate, ¢ is the time, y(x) is the initial imperfection, i.e. a small perturbation to the
initial shape of the compressed bar, y(x,?) is the additional transverse deflection measured from p(x)
((x) 4+ y(x,7) being the total deflection of the bar axis from the straight line between the two ends x = 0 and
x = 1), E is Young’s modulus, / is the moment of inertia, p is the mass density, 4 is the cross-sectional area,
P is the applied axial load, EI and pA are taken as constant.

The compressed bar is simply supported, so that the boundary conditions are

02
y=0, af 0atx=0andx=/ )
and the initial conditions are
0
y=0, 6—);=0att:0 (3)

The initial imperfections are assumed to be an uncertain function of the position x and are bounded.
We now introduce the non-dimensional quantities

v, J(x) x P
= — = — e p— = — 4
u(é,f) A I U(f) A ) é 17 T G)]f, o Pcl ( )
where
1 n2El nN\2 |EI
A\/;’ Pi="5 o= (7)o (5)

in which u(&,7) is the non-dimensional additional displacement, #(¢) is the non-dimensional initial dis-
placement, ¢ is the axial coordinate, 7 is the time, « is the non-dimensional applied load, Py is the classical
buckling load of a perfect bar, w; is the first eigenfrequency of a perfect bar without an axial load, 4 is the
radius of gyration of the bar cross section.

Thus, the differential equation (1), the boundary and initial conditions become, respectively,

4 2 25

2£4+ Z§u+ % _ﬂZ“Z; ©)
and

u=0, %antrzO (7)
and

u=0, %:Oatfzoandézl (8)

For this uncertain boundary-value problem we resort to the normal mode approach, which consists in
expanding the given and sought functions in series in terms of the modes of free vibration of a perfect bar
without an axial load.
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The constant load P is applied at time T = 0 and kept indefinitely. We expand the initial imperfection
profile in a Fourier sine series as

u(é) = iA” sin nmé 9)
n=1

where A4,’s are the uncertain variables and bounded.
We expand the additional deflection u(¢, 1) in a series in the same manner

i G,(7) sinnné (10)

n=I

where G,(7) is an uncertain function of .
Following Elishakoff (1978a,b), one finds that the Fourier coefficients of the additional deflection profile
are

Gu(1) = 4a9,(7) (11)

in which ), is the following deterministic function of time:

(cosh(ryr) = 1)/(1=f,), p, <1
Yu(0) = § an’t®/2, B, =1 (12)
(cos(r,r) = 1)/(1 = B,),  f,>1

p,=—, r=n\|n*>—uq (13)

Thus, the total normalized deflection function v(¢&, 1) at position ¢ and at time 7 is given by
v(é 1) =u(é ) +u(é) = ZA”(I + ¥, (7)) sin nwé (14)
n=1

In the subsequent discussion this series will be truncated at n = N. For convenience, let us define an N-
dimensional vector as follows:

@ = (@), @(&1)=(1+y,(7))sinnns (15)
Thus, truncating the total deflection v(&, 1) in Eq. (14) after the Nth term, one finds

ZA 14y, (7)) sin(nné) = AT (16)

where AT = (41,45, ..., 4y).

The aim of this paper is to exploit two non-probabilistic set-theoretical models to determine the region or
the upper and lower bounds of the parameter characterizing the total normalized deflection of a thin bar
under dynamic loading conditions, given uncertain-but-bounded initial geometric imperfection region. By
evaluating the region of the dynamic response parameter as a function of the load and of the uncertainties
in the initial imperfection of the bar, it is possible to identify the allowable imperfection region for given
region of the load.
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3. Convex models

A new, non-probabilistic, convex models of uncertainty have been developed (Koning and Taub, 1934),
for applied mechanics applications in a quite general context. The models utilize the imperfect, scanty
knowledge on uncertain quantities, instead of precise information on the probability contents of random
variables. The models use a representation of uncertainty phenomena by convex sets such as ellipsoid. The
approach itself is also referred to a convex modeling.

Let Ay = (4,0) be the nominal values of the uncertain-but-bounded initial imperfection Fourier coeffi-
cients in Eq. (16), which might be visualized as the mean values or average values of those uncertain-but-
bounded initial imperfection Fourier coefficients. Then, the uncertain-but-bounded initial imperfection
Fourier coefficients of values different from those nominal values could be denoted as the following vector
form

A=A4p+9 (17a)
and the component form
A, =A0+96,, n=12,...,N (17b)

where 6 = (0,,) is the uncertain quantity in the uncertain-but-bounded initial imperfection Fourier coeffi-
cients. Thus, the total normalized deflection function v(¢&, 7) can be rewritten as

0(&,7) = D Aw(l +,(v) sin(nné) + > 8,(1+ ¥, (x)) sin(nnd)

=Ajp+5"p=v(&1)+ 0" (18)
where
N
vo(&,7) =Y Aw(1 + (1)) sin(nné) = A (19)

n=1

Let us assume that we have only limited information for characterizing the initial imperfection profile. In
particular, the only information is that the deviation 6 = (6,) from the initial imperfection Fourier coef-
ficients in Eq. (14) fall within the following ellipsoidal set

E0,W)={6" = (6,,05,...,0y) : " W5 < 0%} (20)

where W is an N x N-dimensional positive definite real symmetric matrix and is called the weighting matrix,
and 0 is a positive number and is called the radius of the ellipsoid. The shape and size of the ellipsoid are
determined by the weighted matrix # and the radius 6, which are chosen to represent available information
concerning the variability of the Fourier coefficients of the initial deflection profile. N is the number of
dominant Fourier coefficients.

The bounded convex set (20) may be thought of as a constraint condition. Thus, by solving for the total
deflection of the bar v(&, 1) we mean to solve the family of the differential equations in which the initial
geometric imperfection is uncertain ranging in inside the certain convex set. That is to say that the total
deflection of the bar equation with initial geometric imperfection is a set. Taking this into account, one has
to determine a closed convex interval set [vmin(&, T), Umax (&, 7)] for the total deflection, one of the smallest
widths enclosing all possible values of the total normalized deflection v(&, 7). Because E(0, W) represents a
realistic ensemble of the initial imperfection Fourier coefficients, the lowest total deflection vy, (&, 7) which
can be obtained from any of the bars in this ensemble is expressed formally as the minimum of expression
(18) on the set E(6, W).
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The set of extreme points of the ellipsoidal set £(0, W) is the ellipsoidal shell
SO, W) ={6" = (1,05,...,0y) : 0 W5 = 0"} (21)

The problem is formulated as follows: given an imperfection ellipsoid of the initial imperfections, find
the initial imperfection vector that extremize the total deflection.

The extremum on the convex set E(0, W) of the total deflection of the bar at time t and position ¢ is
represented as

vext(,7) = eﬁterg(r;lp%m{v(é, 1)} (22)

Because v(¢, 1) is a linear function of the deviation vector in the Fourier coefficients 6 = (d,), and because
E(0, W) is a convex set, the extremum of the total deflection v(¢, ) occurs on the set of extreme points of the

set E(60,W).
That is to say
Vet (€,7) = eﬂterse(lg}%m{v(é, 7)} (23)

We can obtain an explicit expression for the extremum by employing the method of Lagrange multi-
pliers. In the most cases, the weighting matrix of the ellipsoid is often taken as the following N x N-
dimensional diagonal matrix form

W = dia ( e%) (24)
where ¢, > 0, n=1,2,...,N. Then, the ellipsoidal equation can be written as
T 5
STWo = ; g <0 (25)

Thus, by convex models, the least favorable and the most favorable total deflections may be determined
as follows:

Umax (&, 7) = ZAno(l + (7)) sin(nné) + 0 Z (ea(1 + 1, (7)) sin(nné))? (26a)
and
Umin(&,7) = Y Auo(1 4+ ,(x)) sin(nné) — 0, | > (eu(1 + (1)) sin(nné))? (26b)

Under dynamic loading conditions, by Eq. (26) we can calculate the maximum and minimum bounds of
the total normalized deflection of a thin bar with given uncertain-but-bounded initial geometric imper-
fection region using the convex models.

4. Interval analysis method
In the total normalized deflection function v(¢, 1), considering a realistic situation in which available

information on the dominant N initial imperfection Fourier coefficients 4,, n =1,2,...,N in Eq. (16) is
not enough to justify an assumption on their probabilistic characteristics, we follow the thought of interval
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mathematics, and assume that the dominant N initial imperfection Fourier coefficients 4,,n=1,2,...,N
are within bounding vectors 4 = (4;,4,, ... ,AN)T and 4 = (4,,4,, . .. ,AN)T, respectively:

A, <A,<A4,, n=12... N (27)

Clearly, the above inequalities can be expressed as the following interval vector form (Alefeid and
Herzberger, 1983; Moore, 1979; Deif, 1991):

A'=[4,4)=(4), 4. =1[4,,4,)], n=12,....N (28)

where 4 = (4,) and 4 = (4,).
From the interval vector equations (28), we may define the nominal value vector or midpoint vector or
center vector of the interval dominant N initial imperfection Fourier coefficient vector

(4 +4) (4, +4,) _
7 5 , n=12,...,

and the deviation amplitude vector or radius vector or uncertainty of the interval dominant N initial
imperfection Fourier coefficient vector
A—A A, —A
AA:( _):(AAH), AA,,:( n —n)7
2 2
In terms of the interval arithmetic operations, an arbitrary interval number or vector or matrix can be
written as the sum of its midpoint and its uncertain interval. Thus, the interval dominant N initial
imperfection Fourier coefficient vector 4! = [4, 4] is decomposed into the sum of the nominal value 4° and
the deviation amplitude A4, i.e.,

A° = =(4°), A= N (29)

n=1,2,....N (30)

A = A7) = [A° = AD, A + M) = A + [—Ad, Ad] = A4° + AL (31)
where 4 = A° + A4, A = A° — AA, and

AA" = [-AA4,Ad] = AA[-1,1] = Adey (32)
where e, = [—1,1].

In Eq. (16), the total deflection v(&, 7) is thought of as a function of the dominant N initial imperfection
Fourier coefficient 4,, n = 1,2, ..., N, by means of the interval extension of interval mathematics, from Eq.
(16), we have that

o'(&,1) = [0(&,7),5(E, 7)) = (4T (33)
Substitution of Eq. (31) into the above expression yielding
o(&,7) = (4° + [-Ad4,A4)) o (34)
Applying the interval operation, Eq. (34) becomes
o(&,7) = [(&,7),8(8, 7)) = A°p + [~Ad, A4)) o] = A°¢ + [-AL"| 0], Ad"|o]] (35)
According to the necessary and sufficient conditions of equality of two interval vectors, we obtain
(¢, 7) = 4°0 + Ad"|g)| (36a)

and

v(é,1) =A@ — A4" || (36b)
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In terms of the definition of A4 and ¢, we can deduce

5ET) = 0l 0) + 30 A1+, (5) sinom) (57)
and h

) = ) = 3 A4+, (0 i) (370)
where i

(E) = A% = 3 AE(1 4, (0) sinom) 39)
With the expression ofn ;lc and ¢, we also conclude

BE 1) = S A+ (0)) sin(ond) + 3 Ay I(1 -+ 9, (2) sin(om)| (399)
and " "

U6) = 2501 (0 i) — 3 A4 (1, ) sin) (390)

By Egs. (39) we can determine the interval region of the total normalized deflection of a thin bar under
dynamic loading conditions, given uncertain-but-bounded initial geometric imperfection region using the
interval analysis method.

5. Comparison of two set-theoretical methods based on determination of the outer enclosed hyperrectangle or
interval vector from an ellipsoid

In this section, we will process the comparison problem of the interval analysis method and convex
models based on determining the outer enclosed hyperrectangle or interval vector from an ellipsoid.

5.1. Determination of the interval vector from an ellipsoid
Suppose that from the experimental data we can deduce that the uncertain parameters are varying in the

ellipsoidal set (20). In order to determine the interval vector from the ellipsoid (20), we suppose that the
interval vector (28) that encloses the ellipsoid (20), in two-dimensional space, see Fig. 1.

2A
ZZ / \
Ay \ /
A,
A, Ap A A

Fig. 1. The rectangle enclosing an ellipse.
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According to the symmetry, we can deduce that
A=Ay or A, =49, n=12,...,N (40)
and
Ad = 0e or A4, = 0Oe,, n=12... N (41)

Egs. (40) and (41) imply that the midpoint of the interval vector is equal to the mean value of the ellipsoid,
the uncertainties of the interval vector are the multiplication of the radius and the semi-axes of the ellipsoid.

5.2. Comparison of two set-theoretical methods

The maximum and minimum values, vy.x (&, 7) and vy (&, 7) of the total deflection of a thin bar with
given uncertain initial geometric imperfection, which are obtained by convex models, can be composed to a
convex set or an interval

UI (67 T) = [Umin(éy T); Umax(éy T)] (42)

From the convex models point of view, the convex set v'(&, 7) is the smallest set containing all true the total
deflection of a thin bar with uncertain initial geometric imperfections.

By interval analysis method, the upper bound 7(¢, 1), and lower bound v(&, ), on the total deflection of a
thin bar with uncertain initial geometric imperfections can also constitute an interval number. According to
the interval mathematical theory (Ben-Haim and Elishakoff, 1989, 1990), the interval number

Ml(f,’t) = [Q(C,‘C),E(f,‘f)} (43)

is also the smallest set containing all total deflections of a thin bar with uncertain initial geometric
imperfections.

The following part of this section, we will compare u'(¢,7) and v'(&,7), and show which is the true
smaller set in (¢, t) and v'(&, 7).

Now we suppose that the interval vector A' = [4,4] = (4}), 4. = [4,,4,],n =1,2,...,N of the uncertain
initial geometric imperfection is obtained based on the ellipsoid (20) of the uncertain initial geometric
imperfection. Thus, by means of Eq. (40), from Egs. (19) and (38), we can obtain the following equality:

(&, 1) = ve(&,7) (44)
For the uncertainties A4, = (4, — 4,)/2,n=1,2,...,N, of the interval vector 4" and the radius 0 and the

semi-axes e,, n = 1,2,..., N of the ellipsoid of the uncertain-but-bounded initial imperfections vector, from
Eqgs. (27) and (41) we have that

N

0, > (e(1+,(1)) sin(nn&))* = 6

n=1 n

(en(1 + ¥, (1)) sin(nmé))”

M=

1

(A4,(1 4y, (7)) sin(nné))? (45)

Il
-
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Since
> 1(Ad, (14 4, (1) sin(mné))[|(A4, (1 + (1)) sin(nn&) )| Ad, A4,
g
Z (1 + ¢, (7)) sin(mnd))||((1 + (7)) sin(nn&))|A4,,A4, = 0 (46)

and if N > 1, then, from the following equality:

AAd"|p| = Z| o(1+ 1, (7)) sin(n \—Z\(lw ) sin(nné))|AA

J<Z| 1+, )sm(nng))|AA>

\/Z,, LI((1+,(0)) sin(nnd))|A4,)? +Z,,,n | (A +,(0) sin(mr))[[((1 + ¥, (7)) sin(nnd)) A4, A4,

(47)
We obtain the following inequality:
N
ALT|¢| = ZI WL+ 9,(0) sin(nmd))| = D |((1+ ¢, (x)) sin(nn) )| A4,
n=1
N 2 N
= (Z (1 + v, (7)) sin(nné))] ) Z (1 + (1)) sin(nné))|A4,)?
n=1 n=1
N
= | D_(0ey((1 4y, (7)) sin(nnc)))* (48)
n=1
Because of Eqgs. (43) and (48), from Eqgs. (30) and (39) we can deduce
U Upgiy S Umax SV OT ul C ot (49)

The expression (53) show that under the condition of the interval vector determined from an ellipsoid of
the initial geometric imperfection vector, the total deflection set obtained by convex models is smaller that
by interval analysis method for a thin bar with uncertain-but-bounded initial geometric imperfections.
Namely the lower bound of the total normalized deflection within interval analysis method is smaller than
one predicted by convex models, and the upper bound of the total deflection furnished by the interval
analysis method is larger than those yielded by convex models.

6. Comparison of two set-theoretical methods based on determination of the out enclosed ellipsoid from an
hyperrectangle or interval vector

In this section, we will handle the comparison problem of the interval analysis method and convex
models based on determining the outer enclosed ellipsoid from a hyperrectangle or an interval vector.
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6.1. Determination of the ellipsoid form an interval vector

Before any prediction can be made by convex model method and interval analysis method on the
buckling critical load of the composite structures with uncertain parameters, the values of the ellipsoidal
radius o, the ellipsoidal semi-axes e = (e, ), and the upper bound 4 = (4,), and lower bound 4 = (4,)), of
the interval vector should be determined in advance. In fact, these values which describe uncertainties in
structural parameters are dependent on the manufacturing process by which composite structures have
been fabricated. It is understandable that the more advanced the manufacturing process and the better the
workmanship, the smaller these uncertainties in structural parameters will be in value. Some measurements
of the structural parameters for the composite materials were described by Elishakoff (1978a,b), which
shows clearly a scatter or an uncertainty of the measured data for the structural parameters. In particular,
for the transverse and longitudinal Poisson’s ratio, the experimental values have a large uncertainty.
Generally speaking, if sufficient amount of experimental data are available, the average value of these data
could be used as the nominal value 4y = (4,9), for the corresponding structural parameters, whereas the
absolute values of the maximum uncertainties in structural parameters could be chosen as the proper
deviations from the average values of the corresponding measured data.

Assume that from the experimental data we can know that the uncertain-but-bounded initial imper-
fection Fourier coefficients on Eq. (16) are varying in the inequalities (27) respectively. Let Ay = (4,0), be
the nominal values of the initial imperfection Fourier coefficients. Then, the uncertain-but-bounded initial
imperfection Fourier coefficients of values different from those nominal values could be denoted as the
following vector form:

A=A4p+9, |0|<A4 (50a)
and the component form
Ay =Ayp~+ 0., |0, <A4,, n=12,...,N (50b)

where the second of the above equation describes a box or hyperrectangle. In two-dimensional case, see
Fig. 2. In order to give the relation expression of an interval vector and an ellipsoid, we need to enclose this
box by an ellipsoid, i.e.

N 2 N 2
0 A, — A,
nzzz( 20) <1 (51)
n=1 (0671) n=1 (een)
Obviously, according to the symmetry the interval and the ellipsoid, we can deduce that
AO =A° OI'A,,() :A(:” n:1,2,...,N (52)

U

S|

Yy Y Y U

Fig. 2. The ellipse enclosing a rectangle.
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Thus, the question arises as to how to determine the semi-axes e = (e, ), and the radius 0 of this ellipsoid
from given the upper bound 4 = (4,), and lower bound 4 = (4 — n),, of the interval vector. Naturally,
such an ellipsoid should have a minimum volume of the above ellipsoid is given by

V= ClN_[(He,,) (53)

where C is a constant.
Since the corner points 4,9 + A4, of the box (50b) should be on the surface of the ellipsoid, we have that
A4? A4 A4
L4 L4+ Yoo (54)
(Oey)”  (Oer) (Oey)
Thus, the problem of determining the values 0 and e = (e,), from the given values 4 = (4,), and
A4 = (4,), become the minimum value problem of the volume ¥ of the ellipsoid subject to the constraint
condition (54). To do this, we use the Lagrange multiplier technique. The Lagrangean function L reads

N AA? AA2 AA2
L=CJ](0e,) + 7 L+ —2 4+ +—2 1 (55)
e (0er)”  (Oe) (Oen)
Requirements
oL
— = =1,2,...
ey~ "= LA N (56)
leads to the equations
al 2)AA42
c I (ben) - 1=0, n=12,...,N (57)
m=1,m#n (ee”)

We multiply (57) by Oe,, n =1,2,...,N and sum up all N equations to yield

2 2 2
NV =22 AA12+ AA22+...+ AANZ =0 (58)
(Ber)”  (0ey) (Oey)
Bearing in mind Eqgs. (54) and (58) becomes
)= % v (59)
Substituting Eq. (59) into Eq. (57) leads to
2
r_ N Ad, V=0 (60)
(9@,,) (06,1)
which implies that
=+/NA4,, n=1,2,....N (61)

If VNAA4,, n=1,2,...,N have the common factor, then let the ellipsoid radius 0 be equal to the
common factor, i.e.

0 = commonfactor{v'NA4,, n=1,2,...,N} (62)

otherwise, let the ellipsoidal radius 6 be equal to unity, i.e.
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0=1 (63)
Thus, the semi-axes of the ellipsoid are determined from the expressions
NAA
e,,:\/_g ~ on=12,...,N (64)

The one-to-one relationship of an interval vector and an ellipsoid is determined. Given one of an interval
vector and an ellipsoid, we can determine another.

6.2. Comparison between interval analysis method and convex models

From Egs. (34) and (42), we can compute the upper and lower bounds on the critical buckling load of
composite structures by convex model method and interval analysis method, respectively. In this section,
we will compare the accuracy of convex model method and interval analysis method in solving the buckling
problem.

In terms of Eq. (52), from Egs. (19) and (38), we can deduce the following equality:

Uc(iar) = Uo(é,f) (65)
For the second parts of Eq. (26) and (39), let us consider Chaucy—Schawrz inequality

N N 1/2 N 1/2
Za”bn < <Zai> <Zbi> (66)
n=1 n=1

n=1

where a;, b;, i = 1,2,...,N are real numbers.
Letting
. 1
= (1 4+, (7)) sin(nn))Ad,|, - by = (67)
from Eq. (66), we have
N N
Z [(( ) sin(nné))| ZN )) sin(nné)Ad,,)?
n=1 n=1
N N
(¢ 7)) sin(nné)VNAA,)’ = | > ((1+ ,(0)) sin(nné)e,)’ (68)
n=1 n=1

Hence, because of Egs. (65) and (68), from Egs. (26) and (39), we obtain
Umin(éa T) < Q(é, T) < E(é; T) < Umax(éa T) (69)

from which, we can know that the upper and lower bounds on the critical buckling loads are calculated by
the interval analysis method is sharper than those that are obtained by convex model method.

7. Numerical examples
Let us take the numerical example shown in Fig. 3 from Lindberg (1965) to show that comparison

between models and interval analysis models in predicting the dynamic response and buckling measure set
for structures with unknown-but-bounded initial imperfections.
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p

o !t

Fig. 3. A compressed bar and its applied axial load P.

In the case of determining the interval vector from an ellipsoid, the ellipsoidal set of allowed dominant
initial imperfection Fourier coefficients is a sphere centered at the origin in 10-dimensional real number
space. Thus, 10 harmonics are considered, the weighting matrix of the ellipsoid is taken as the 10x 10
identity matrix and the radius of the ellipsoid is taken as 6§ = 0.07. Thus, the interval vector of the initial
imperfections of the bar can be determined as 4! =[0.045,0.055], i =1,2,...,10 based on the given
ellipsoid. The upper and lower curves of Fig. 4 show the maximum and minimum normalized total
deflections as functions of normalized time, at the midpoint ¢ = 0.5 of the bar. The axial load is twice the
classical buckling load, so o = 2. It can be seen from Fig. 4 that under the condition of the interval vector
determined from an ellipsoid of the initial imperfection vector, the total deflection set obtained by convex
models is smaller that by interval analysis method for the bar with initial imperfections. Namely the lower
bound on the total deflection of the bar within interval analysis method is smaller than one predicted by
convex models, and the upper bound on the total deflection of the bar furnished by the interval analysis
method is larger than one yielded by convex models.

In the condition of determining the ellipsoid from an interval vector, the component of the interval
vector of allowed dominant initial imperfection Fourier coefficients are 4| = [0.045,0.055], i = 1,2,..., 10.
Making use of Egs. (29) and (30), the mean values and the radiuses of the interval vector are calculated
A5 =0.05, 44, = 0.005,i = 1,2,...,10. Thus, by Egs. (52), (62) and (64), we can obtain the central values,
the radius and semi-axes are, respectively, 4,0 = 0.05,i =1,2,...,10; 0 = 0.005v/10;¢; = 1,i = 1,2,...,10.
Fig. 5 portrays the dependence of the maximum and minimum total deflections of the bar with initial
imperfections on the time by convex models and interval analysis method. From Fig. 5 we can see that the
maximum and minimum total deflections of the bar non-linearly vary with the time 7; Convex models yield
broader bounds, namely the lower bound within convex models is smaller than that predicted by interval
models. Likewise, the upper bound furnished by the convex models is larger than that yielded by interval
models.
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Fig. 4. The bounds on the total normalized deflection versus normalized time.
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Fig. 5. The bounds on the total normalized deflection versus normalized time.

8. Conclusions

Two set estimation methods have been given to the problem of set estimating the dynamic response and
buckling failure measures of bars, when the initial imperfection vector is uncertain except for the fact that it
belongs to given bounded convex set. The cases of both ellipsoid constraints and interval constraints for the
initial imperfections have been considered. In the former case, the interval vector containing the set of
possible responses of the dynamic response and buckling failure measures of bars by convex models is
given. In the latter case, the interval vector describing a bounding box or hyperrectangle as a set of possible
dynamic responses is also derived. The transformation relationship of ellipsoid and interval vector was
generally produced in different conditions. It is proved that, under the condition of the ellipsoid from an
interval vector, the interval vector set yielded by interval analysis models is smaller than that presented by
convex models; under the condition of the interval vector from an ellipsoid, the interval response vector set
by convex models is smaller than that yielded by interval analysis models. Therefore, if we know the form of
convex set of initial imperfections, we should use convex models for solving the dynamic response and
buckling failure measures of bars with uncertain-but-bounded initial imperfections; if we describe the initial
imperfections by an interval vector, we should employ interval analysis models for estimating the dynamic
response and buckling failure measures of bars with uncertain-but-known initial imperfections. In fact, the
interval vector containing the uncertain initial imperfections is more easily available than the ellipsoidal, so
the interval analysis method is more practical.
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